High Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells

نویسندگان

  • Qichun Zhang
  • Yun Zhang
  • Haihua Feng
  • Rui Guo
  • Lai Jin
  • Rong Wan
  • Lina Wang
  • Cheng Chen
  • Shengnan Li
چکیده

BACKGROUND High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3)H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel biological functions of high-density lipoprotein cholesterol.

In addition to its role in reverse cholesterol transport, high-density lipoprotein (HDL) cholesterol has direct action on numerous cell types that influence cardiovascular and metabolic health. Cellular responses to HDL entail its capacity to invoke cholesterol efflux that causes signal initiation via scavenger receptor class B, type I, and plasma membrane receptor activation by HDL cargo molec...

متن کامل

Studies on Eel Liver Functions Using Perfused Liver and Primary Cultured Hepatocytes

Perfused eel livers, isolated eel hepatocytes, and cultured eel hepatocytes are used to investigate eel liver functions such as gluconeogenesis, glycogen synthesis, and lipoprotein synthesis and methods for preparation are described. A novel phosphoenolpyruvate (PEP) synthesis pathway from pyruvate in gluconeogenesis in eel liver was elucidated and PEP synthesis pathways in eel, rat, and pigeon...

متن کامل

Dexamethasone Promotes the Risk of Cardiovascular Disease in High Fructose-exposed Wistar Rats

Background: Dyslipidemia constitutes a serious public health concern globally. It has been established that excessive fructose intake results in dyslipidemia; however, whether dexamethasone aggravates or alleviates fructose-induced dyslipidemia is unknown. Thus, we examined the effects of dexamethasone on dyslipidemia and hyperuricemia in high fructose-taking Wister rats. Methods: Twenty male...

متن کامل

Association of Lecithin Cholesterol Acyltransferase rs5923 Polymorphism in Iranian Individuals with Extremely Low High-Density Lipoprotein Cholesterol: Tehran Lipid and Glucose Study

Background: The serum concentration of high-density lipoprotein cholesterol (HDL-C) is one of the important heritable risk factors for cardiovascular disease and is a target for therapeutic intervention. In this study, we aimed to evaluate the effects of lecithin cholesterol acyltransferase (LCAT) gene polymorphism rs5923 on LCAT enzyme activity and serum HDL-C concentration. Methods: The study...

متن کامل

Skeletal Muscle Insulin Resistance Associated with Cholesterol-Induced Activation of Macrophages Is Prevented by High Density Lipoprotein

BACKGROUND Emerging evidence suggests that high density lipoprotein (HDL) may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011